skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Halsey, Kimberly H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionVolatile organic compounds (VOCs) are small, low-vapor-pressure molecules emitted from the surface ocean into the atmosphere. In the atmosphere, VOCs can change OH reactivity and condense onto particles to become cloud condensation nuclei. VOCs are produced by phytoplankton, but the conditions leading to VOC accumulation in the surface ocean are poorly understood. MethodsIn this study, VOC accumulation was measured in real time over a 12 h day−12 h night cycle in the model diatomPhaeodactylum tricornutumduring exponential growth. ResultsSixty-threem/zsignals were produced in higher concentrations than in cell-free controls. All VOCs, except methanol, were continuously produced over 24 h. All VOCs accumulated to higher concentrations during the day compared to the night, and 11 VOCs exhibited distinct accumulation patterns during the morning hours. Twenty-seven VOCs were associated with known metabolic pathways inP. tricornutum, with most VOCs involved in amino acid and fatty acid metabolism. DiscussionPatterns of VOC production were strongly associated with diel shifts in cell physiology and the cell cycle. Diel VOC production patterns give a fundamental understanding of the first steps in VOC accumulation in the surface ocean. 
    more » « less
    Free, publicly-accessible full text available October 6, 2026
  2. Abstract Labile dissolved organic carbon in the surface oceans accounts for ~¼ of carbon produced through photosynthesis and turns over on average every three days, fueling one of the largest engines of microbial heterotrophic production on the planet. Volatile organic compounds are poorly constrained components of dissolved organic carbon. Here, we detected 72 m/z signals, corresponding to unique volatile organic compounds, including petroleum hydrocarbons, totaling approximately 18.5 nM in the culture medium of a model diatom. In five cocultures with bacteria adapted to grow with this diatom, 1 to 59 m/z signals were depleted. Two of the most active volatile organic compound consumers, Marinobacter and Roseibium, contained more genes encoding volatile organic compound oxidation proteins, and attached to the diatom, suggesting volatile organic compound specialism. With nanoscale secondary ion mass spectrometry and stable isotope labeling, we confirmed that Marinobacter incorporated carbon from benzene, one of the depleted m/z signals detected in the co-culture. Diatom gross carbon production increased by up to 29% in the presence of volatile organic compound consumers, indicating that volatile organic compound consumption by heterotrophic bacteria in the phycosphere – a region of rapid organic carbon oxidation that surrounds phytoplankton cells – could impact global rates of gross primary production. 
    more » « less
    Free, publicly-accessible full text available October 15, 2026
  3. Abstract Volatile Organic Compounds (VOCs) are a diverse collection of molecules critical to cell metabolism, food web interactions, and atmospheric chemistry. The eukaryotic coccolithophoreGephyrocapsa huxleyi, an abundant coastal eukaryotic phytoplankter, forms massive blooms in coastal upwelling regions, which are often terminated by viruses (EhVs).G. huxleyiproduces organosulfur VOCs such as dimethyl sulfide (DMS) and halogenated metabolites that play key roles in atmospheric chemistry. Here we resolved the role of lytic viral infection by EhV207 on VOC production of the model strainG. huxleyiCCMP374. Our analysis identified 79 VOCs significantly impacted by viral infection, particularly during cell lysis, with sulfur containing VOCs like DMS dominating the profiles. Viral lysis results in a nearly six-fold increase in VOC production and generated a previously unrecognized range of VOCs, including 15 sulfur, 22 nitrogen, 2 phosphorus, 19 oxygen and 17 halogen-containing compounds. These findings reveal that viral infection ofG. huxleyireleases VOCs which are much more diverse than previously recognized. We further show that EhV207 primarily accelerates existing metabolic processes inG. huxleyiand facilitates the release of pre-existing intracellular VOCs rather than inducing novel biochemical pathways. This wide range of VOCs may be produced on a massive scale during coccolithophore bloom-and-bust cycles, with important impacts on coastal biogeochemistry and surface ocean/atmosphere interactions. 
    more » « less
    Free, publicly-accessible full text available February 10, 2026
  4. Hansell, Dennis A; Carlson, Craig A (Ed.)
  5. Chen, Peng (Ed.)
    Viral lysis of phytoplankton is one of the most common forms of death on Earth. Building on an assay used extensively to assess rates of phytoplankton loss to predation by grazers, lysis rates are increasingly quantified through dilution-based techniques. In this approach, dilution of viruses and hosts are expected to reduce infection rates and thus increase host net growth rates (i.e., accumulation rates). The difference between diluted and undiluted host growth rates is interpreted as a measurable proxy for the rate of viral lytic death. These assays are usually conducted in volumes ≥ 1 L. To increase throughput, we implemented a miniaturized, high-throughput, high-replication, flow cytometric microplate dilution assay to measure viral lysis in environmental samples sourced from a suburban pond and the North Atlantic Ocean. The most notable outcome we observed was a decline in phytoplankton densities that was exacerbated by dilution, instead of the increased growth rates expected from lowered virus-phytoplankton encounters. We sought to explain this counterintuitive outcome using theoretical, environmental, and experimental analyses. Our study shows that, while die-offs could be partly explained by a ‘plate effect’ due to small incubation volumes and cells adhering to walls, the declines in phytoplankton densities are not volume-dependent. Rather, they are driven by many density- and physiology-dependent effects of dilution on predation pressure, nutrient limitation, and growth, all of which violate the original assumptions of dilution assays. As these effects are volume-independent, these processes likely occur in all dilution assays that our analyses show to be remarkably sensitive to dilution-altered phytoplankton growth and insensitive to actual predation pressure. Incorporating altered growth as well as predation, we present a logical framework that categorizes locations by the relative dominance of these mechanisms, with general applicability to dilution-based assays. 
    more » « less
  6. null (Ed.)
    The oceans teem with heterotrophic bacterioplankton that play an appreciable role in the uptake of dissolved organic carbon (DOC) derived from phytoplankton net primary production (NPP). As such, bacterioplankton carbon demand (BCD), or gross heterotrophic production, represents a major carbon pathway that influences the seasonal accumulation of DOC in the surface ocean and, subsequently, the potential vertical or horizontal export of seasonally accumulated DOC. Here, we examine the contributions of bacterioplankton and DOM to ecological and biogeochemical carbon flow pathways, including those of the microbial loop and the biological carbon pump, in the Western North Atlantic Ocean (∼39–54°N along ∼40°W) over a composite annual phytoplankton bloom cycle. Combining field observations with data collected from corresponding DOC remineralization experiments, we estimate the efficiency at which bacterioplankton utilize DOC, demonstrate seasonality in the fraction of NPP that supports BCD, and provide evidence for shifts in the bioavailability and persistence of the seasonally accumulated DOC. Our results indicate that while the portion of DOC flux through bacterioplankton relative to NPP increased as seasons transitioned from high to low productivity, there was a fraction of the DOM production that accumulated and persisted. This persistent DOM is potentially an important pool of organic carbon available for export to the deep ocean via convective mixing, thus representing an important export term of the biological carbon pump. 
    more » « less
  7. Abstract The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral reproduction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus–host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host–virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host–virus densities. 
    more » « less